Copied to
clipboard

G = C32×C8○D4order 288 = 25·32

Direct product of C32 and C8○D4

direct product, metabelian, nilpotent (class 2), monomial

Aliases: C32×C8○D4, C8.7C62, D4.(C3×C12), (C2×C24)⋊15C6, (C6×C24)⋊23C2, C4.5(C6×C12), C24.40(C2×C6), (C3×D4).6C12, Q8.2(C3×C12), C12.40(C2×C12), M4(2)⋊5(C3×C6), C62.66(C2×C4), (C2×C4).24C62, C4.12(C2×C62), C22.1(C6×C12), (C3×Q8).10C12, (D4×C32).4C4, (Q8×C32).4C4, (C3×M4(2))⋊11C6, (C3×C24).75C22, C6.42(C22×C12), C12.68(C22×C6), (C3×C12).195C23, (C6×C12).373C22, (C32×M4(2))⋊17C2, (C2×C8)⋊7(C3×C6), C2.7(C2×C6×C12), C4○D4.5(C3×C6), (C2×C6).11(C2×C12), (C3×C4○D4).22C6, (C3×C12).122(C2×C4), (C2×C12).160(C2×C6), (C32×C4○D4).9C2, (C3×C6).134(C22×C4), SmallGroup(288,828)

Series: Derived Chief Lower central Upper central

C1C2 — C32×C8○D4
C1C2C4C12C3×C12C3×C24C6×C24 — C32×C8○D4
C1C2 — C32×C8○D4
C1C3×C24 — C32×C8○D4

Generators and relations for C32×C8○D4
 G = < a,b,c,d,e | a3=b3=c8=e2=1, d2=c4, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=c4d >

Subgroups: 204 in 186 conjugacy classes, 168 normal (14 characteristic)
C1, C2, C2, C3, C4, C4, C22, C6, C6, C8, C8, C2×C4, D4, Q8, C32, C12, C2×C6, C2×C8, M4(2), C4○D4, C3×C6, C3×C6, C24, C2×C12, C3×D4, C3×Q8, C8○D4, C3×C12, C3×C12, C62, C2×C24, C3×M4(2), C3×C4○D4, C3×C24, C3×C24, C6×C12, D4×C32, Q8×C32, C3×C8○D4, C6×C24, C32×M4(2), C32×C4○D4, C32×C8○D4
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, C23, C32, C12, C2×C6, C22×C4, C3×C6, C2×C12, C22×C6, C8○D4, C3×C12, C62, C22×C12, C6×C12, C2×C62, C3×C8○D4, C2×C6×C12, C32×C8○D4

Smallest permutation representation of C32×C8○D4
On 144 points
Generators in S144
(1 103 95)(2 104 96)(3 97 89)(4 98 90)(5 99 91)(6 100 92)(7 101 93)(8 102 94)(9 106 130)(10 107 131)(11 108 132)(12 109 133)(13 110 134)(14 111 135)(15 112 136)(16 105 129)(17 121 113)(18 122 114)(19 123 115)(20 124 116)(21 125 117)(22 126 118)(23 127 119)(24 128 120)(25 49 41)(26 50 42)(27 51 43)(28 52 44)(29 53 45)(30 54 46)(31 55 47)(32 56 48)(33 137 81)(34 138 82)(35 139 83)(36 140 84)(37 141 85)(38 142 86)(39 143 87)(40 144 88)(57 77 65)(58 78 66)(59 79 67)(60 80 68)(61 73 69)(62 74 70)(63 75 71)(64 76 72)
(1 23 47)(2 24 48)(3 17 41)(4 18 42)(5 19 43)(6 20 44)(7 21 45)(8 22 46)(9 138 78)(10 139 79)(11 140 80)(12 141 73)(13 142 74)(14 143 75)(15 144 76)(16 137 77)(25 97 121)(26 98 122)(27 99 123)(28 100 124)(29 101 125)(30 102 126)(31 103 127)(32 104 128)(33 57 129)(34 58 130)(35 59 131)(36 60 132)(37 61 133)(38 62 134)(39 63 135)(40 64 136)(49 89 113)(50 90 114)(51 91 115)(52 92 116)(53 93 117)(54 94 118)(55 95 119)(56 96 120)(65 105 81)(66 106 82)(67 107 83)(68 108 84)(69 109 85)(70 110 86)(71 111 87)(72 112 88)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)
(1 7 5 3)(2 8 6 4)(9 11 13 15)(10 12 14 16)(17 23 21 19)(18 24 22 20)(25 31 29 27)(26 32 30 28)(33 35 37 39)(34 36 38 40)(41 47 45 43)(42 48 46 44)(49 55 53 51)(50 56 54 52)(57 59 61 63)(58 60 62 64)(65 67 69 71)(66 68 70 72)(73 75 77 79)(74 76 78 80)(81 83 85 87)(82 84 86 88)(89 95 93 91)(90 96 94 92)(97 103 101 99)(98 104 102 100)(105 107 109 111)(106 108 110 112)(113 119 117 115)(114 120 118 116)(121 127 125 123)(122 128 126 124)(129 131 133 135)(130 132 134 136)(137 139 141 143)(138 140 142 144)
(1 61)(2 62)(3 63)(4 64)(5 57)(6 58)(7 59)(8 60)(9 124)(10 125)(11 126)(12 127)(13 128)(14 121)(15 122)(16 123)(17 135)(18 136)(19 129)(20 130)(21 131)(22 132)(23 133)(24 134)(25 143)(26 144)(27 137)(28 138)(29 139)(30 140)(31 141)(32 142)(33 43)(34 44)(35 45)(36 46)(37 47)(38 48)(39 41)(40 42)(49 87)(50 88)(51 81)(52 82)(53 83)(54 84)(55 85)(56 86)(65 91)(66 92)(67 93)(68 94)(69 95)(70 96)(71 89)(72 90)(73 103)(74 104)(75 97)(76 98)(77 99)(78 100)(79 101)(80 102)(105 115)(106 116)(107 117)(108 118)(109 119)(110 120)(111 113)(112 114)

G:=sub<Sym(144)| (1,103,95)(2,104,96)(3,97,89)(4,98,90)(5,99,91)(6,100,92)(7,101,93)(8,102,94)(9,106,130)(10,107,131)(11,108,132)(12,109,133)(13,110,134)(14,111,135)(15,112,136)(16,105,129)(17,121,113)(18,122,114)(19,123,115)(20,124,116)(21,125,117)(22,126,118)(23,127,119)(24,128,120)(25,49,41)(26,50,42)(27,51,43)(28,52,44)(29,53,45)(30,54,46)(31,55,47)(32,56,48)(33,137,81)(34,138,82)(35,139,83)(36,140,84)(37,141,85)(38,142,86)(39,143,87)(40,144,88)(57,77,65)(58,78,66)(59,79,67)(60,80,68)(61,73,69)(62,74,70)(63,75,71)(64,76,72), (1,23,47)(2,24,48)(3,17,41)(4,18,42)(5,19,43)(6,20,44)(7,21,45)(8,22,46)(9,138,78)(10,139,79)(11,140,80)(12,141,73)(13,142,74)(14,143,75)(15,144,76)(16,137,77)(25,97,121)(26,98,122)(27,99,123)(28,100,124)(29,101,125)(30,102,126)(31,103,127)(32,104,128)(33,57,129)(34,58,130)(35,59,131)(36,60,132)(37,61,133)(38,62,134)(39,63,135)(40,64,136)(49,89,113)(50,90,114)(51,91,115)(52,92,116)(53,93,117)(54,94,118)(55,95,119)(56,96,120)(65,105,81)(66,106,82)(67,107,83)(68,108,84)(69,109,85)(70,110,86)(71,111,87)(72,112,88), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,7,5,3)(2,8,6,4)(9,11,13,15)(10,12,14,16)(17,23,21,19)(18,24,22,20)(25,31,29,27)(26,32,30,28)(33,35,37,39)(34,36,38,40)(41,47,45,43)(42,48,46,44)(49,55,53,51)(50,56,54,52)(57,59,61,63)(58,60,62,64)(65,67,69,71)(66,68,70,72)(73,75,77,79)(74,76,78,80)(81,83,85,87)(82,84,86,88)(89,95,93,91)(90,96,94,92)(97,103,101,99)(98,104,102,100)(105,107,109,111)(106,108,110,112)(113,119,117,115)(114,120,118,116)(121,127,125,123)(122,128,126,124)(129,131,133,135)(130,132,134,136)(137,139,141,143)(138,140,142,144), (1,61)(2,62)(3,63)(4,64)(5,57)(6,58)(7,59)(8,60)(9,124)(10,125)(11,126)(12,127)(13,128)(14,121)(15,122)(16,123)(17,135)(18,136)(19,129)(20,130)(21,131)(22,132)(23,133)(24,134)(25,143)(26,144)(27,137)(28,138)(29,139)(30,140)(31,141)(32,142)(33,43)(34,44)(35,45)(36,46)(37,47)(38,48)(39,41)(40,42)(49,87)(50,88)(51,81)(52,82)(53,83)(54,84)(55,85)(56,86)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,89)(72,90)(73,103)(74,104)(75,97)(76,98)(77,99)(78,100)(79,101)(80,102)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(111,113)(112,114)>;

G:=Group( (1,103,95)(2,104,96)(3,97,89)(4,98,90)(5,99,91)(6,100,92)(7,101,93)(8,102,94)(9,106,130)(10,107,131)(11,108,132)(12,109,133)(13,110,134)(14,111,135)(15,112,136)(16,105,129)(17,121,113)(18,122,114)(19,123,115)(20,124,116)(21,125,117)(22,126,118)(23,127,119)(24,128,120)(25,49,41)(26,50,42)(27,51,43)(28,52,44)(29,53,45)(30,54,46)(31,55,47)(32,56,48)(33,137,81)(34,138,82)(35,139,83)(36,140,84)(37,141,85)(38,142,86)(39,143,87)(40,144,88)(57,77,65)(58,78,66)(59,79,67)(60,80,68)(61,73,69)(62,74,70)(63,75,71)(64,76,72), (1,23,47)(2,24,48)(3,17,41)(4,18,42)(5,19,43)(6,20,44)(7,21,45)(8,22,46)(9,138,78)(10,139,79)(11,140,80)(12,141,73)(13,142,74)(14,143,75)(15,144,76)(16,137,77)(25,97,121)(26,98,122)(27,99,123)(28,100,124)(29,101,125)(30,102,126)(31,103,127)(32,104,128)(33,57,129)(34,58,130)(35,59,131)(36,60,132)(37,61,133)(38,62,134)(39,63,135)(40,64,136)(49,89,113)(50,90,114)(51,91,115)(52,92,116)(53,93,117)(54,94,118)(55,95,119)(56,96,120)(65,105,81)(66,106,82)(67,107,83)(68,108,84)(69,109,85)(70,110,86)(71,111,87)(72,112,88), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,7,5,3)(2,8,6,4)(9,11,13,15)(10,12,14,16)(17,23,21,19)(18,24,22,20)(25,31,29,27)(26,32,30,28)(33,35,37,39)(34,36,38,40)(41,47,45,43)(42,48,46,44)(49,55,53,51)(50,56,54,52)(57,59,61,63)(58,60,62,64)(65,67,69,71)(66,68,70,72)(73,75,77,79)(74,76,78,80)(81,83,85,87)(82,84,86,88)(89,95,93,91)(90,96,94,92)(97,103,101,99)(98,104,102,100)(105,107,109,111)(106,108,110,112)(113,119,117,115)(114,120,118,116)(121,127,125,123)(122,128,126,124)(129,131,133,135)(130,132,134,136)(137,139,141,143)(138,140,142,144), (1,61)(2,62)(3,63)(4,64)(5,57)(6,58)(7,59)(8,60)(9,124)(10,125)(11,126)(12,127)(13,128)(14,121)(15,122)(16,123)(17,135)(18,136)(19,129)(20,130)(21,131)(22,132)(23,133)(24,134)(25,143)(26,144)(27,137)(28,138)(29,139)(30,140)(31,141)(32,142)(33,43)(34,44)(35,45)(36,46)(37,47)(38,48)(39,41)(40,42)(49,87)(50,88)(51,81)(52,82)(53,83)(54,84)(55,85)(56,86)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,89)(72,90)(73,103)(74,104)(75,97)(76,98)(77,99)(78,100)(79,101)(80,102)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(111,113)(112,114) );

G=PermutationGroup([[(1,103,95),(2,104,96),(3,97,89),(4,98,90),(5,99,91),(6,100,92),(7,101,93),(8,102,94),(9,106,130),(10,107,131),(11,108,132),(12,109,133),(13,110,134),(14,111,135),(15,112,136),(16,105,129),(17,121,113),(18,122,114),(19,123,115),(20,124,116),(21,125,117),(22,126,118),(23,127,119),(24,128,120),(25,49,41),(26,50,42),(27,51,43),(28,52,44),(29,53,45),(30,54,46),(31,55,47),(32,56,48),(33,137,81),(34,138,82),(35,139,83),(36,140,84),(37,141,85),(38,142,86),(39,143,87),(40,144,88),(57,77,65),(58,78,66),(59,79,67),(60,80,68),(61,73,69),(62,74,70),(63,75,71),(64,76,72)], [(1,23,47),(2,24,48),(3,17,41),(4,18,42),(5,19,43),(6,20,44),(7,21,45),(8,22,46),(9,138,78),(10,139,79),(11,140,80),(12,141,73),(13,142,74),(14,143,75),(15,144,76),(16,137,77),(25,97,121),(26,98,122),(27,99,123),(28,100,124),(29,101,125),(30,102,126),(31,103,127),(32,104,128),(33,57,129),(34,58,130),(35,59,131),(36,60,132),(37,61,133),(38,62,134),(39,63,135),(40,64,136),(49,89,113),(50,90,114),(51,91,115),(52,92,116),(53,93,117),(54,94,118),(55,95,119),(56,96,120),(65,105,81),(66,106,82),(67,107,83),(68,108,84),(69,109,85),(70,110,86),(71,111,87),(72,112,88)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)], [(1,7,5,3),(2,8,6,4),(9,11,13,15),(10,12,14,16),(17,23,21,19),(18,24,22,20),(25,31,29,27),(26,32,30,28),(33,35,37,39),(34,36,38,40),(41,47,45,43),(42,48,46,44),(49,55,53,51),(50,56,54,52),(57,59,61,63),(58,60,62,64),(65,67,69,71),(66,68,70,72),(73,75,77,79),(74,76,78,80),(81,83,85,87),(82,84,86,88),(89,95,93,91),(90,96,94,92),(97,103,101,99),(98,104,102,100),(105,107,109,111),(106,108,110,112),(113,119,117,115),(114,120,118,116),(121,127,125,123),(122,128,126,124),(129,131,133,135),(130,132,134,136),(137,139,141,143),(138,140,142,144)], [(1,61),(2,62),(3,63),(4,64),(5,57),(6,58),(7,59),(8,60),(9,124),(10,125),(11,126),(12,127),(13,128),(14,121),(15,122),(16,123),(17,135),(18,136),(19,129),(20,130),(21,131),(22,132),(23,133),(24,134),(25,143),(26,144),(27,137),(28,138),(29,139),(30,140),(31,141),(32,142),(33,43),(34,44),(35,45),(36,46),(37,47),(38,48),(39,41),(40,42),(49,87),(50,88),(51,81),(52,82),(53,83),(54,84),(55,85),(56,86),(65,91),(66,92),(67,93),(68,94),(69,95),(70,96),(71,89),(72,90),(73,103),(74,104),(75,97),(76,98),(77,99),(78,100),(79,101),(80,102),(105,115),(106,116),(107,117),(108,118),(109,119),(110,120),(111,113),(112,114)]])

180 conjugacy classes

class 1 2A2B2C2D3A···3H4A4B4C4D4E6A···6H6I···6AF8A8B8C8D8E···8J12A···12P12Q···12AN24A···24AF24AG···24CB
order122223···3444446···66···688888···812···1212···1224···2424···24
size112221···1112221···12···211112···21···12···21···12···2

180 irreducible representations

dim11111111111122
type++++
imageC1C2C2C2C3C4C4C6C6C6C12C12C8○D4C3×C8○D4
kernelC32×C8○D4C6×C24C32×M4(2)C32×C4○D4C3×C8○D4D4×C32Q8×C32C2×C24C3×M4(2)C3×C4○D4C3×D4C3×Q8C32C3
# reps1331862242484816432

Matrix representation of C32×C8○D4 in GL3(𝔽73) generated by

6400
010
001
,
6400
080
008
,
4600
0220
0022
,
100
0270
06146
,
100
01254
06961
G:=sub<GL(3,GF(73))| [64,0,0,0,1,0,0,0,1],[64,0,0,0,8,0,0,0,8],[46,0,0,0,22,0,0,0,22],[1,0,0,0,27,61,0,0,46],[1,0,0,0,12,69,0,54,61] >;

C32×C8○D4 in GAP, Magma, Sage, TeX

C_3^2\times C_8\circ D_4
% in TeX

G:=Group("C3^2xC8oD4");
// GroupNames label

G:=SmallGroup(288,828);
// by ID

G=gap.SmallGroup(288,828);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-3,-2,-2,504,1563,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^8=e^2=1,d^2=c^4,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=c^4*d>;
// generators/relations

׿
×
𝔽